
Open SoundControl: A New Protocol for 
Communicating with Sound Synthesizers 

Matthew Wright 
Adrian Freed 

Center for New Music and Audio Technologies, U.C. Berkeley 
matt,adrian@cnmat.berkeley.edu, http://www.cnmat.berkeley.edu/People 

Abstract 

Open SoundControl is a new protocol for communication among computers, sound 
synthesizers, and other multimedia devices that is optimized for modern networking 
technology.  Entities within a system are addressed individually by an open-ended URL-style 
symbolic naming scheme that includes a powerful pattern matching language to specify 
multiple recipients of a single message.  We provide high resolution time tags and a 
mechanism for specifying groups of messages whose effects are to occur simultaneously.  
There is also a mechanism for dynamically querying an Open SoundControl system to find 
out its capabilities and documentation of its features. 

 

1 Introduction 

A better integration of computers, controllers 
and sound synthesizers will lead to lower costs, 
increased reliability, greater user convenience, 
and more reactive musical control. The 
prevailing technologies to interconnect these 
elements are bus (motherboard or PCI), 
operating system interface (software synthesis), 
or serial LAN (Firewire, USB, ethernet, fast 
ethernet). It is easy to adapt MIDI streams to this 
new communication substrate [11]. To do so 
needlessly discards new potential and 
perpetuates MIDI's well-documented flaws. 
Instead we have designed a new protocol 
optimized for modern transport technologies. 

Open SoundControl is an open, efficient, 
transport-independent, message-based protocol 
developed for communication among computers, 
sound synthesizers, and other multimedia 
devices. Open SoundControl is a machine and 
operating system neutral protocol and readily 
implementable on constrained, embedded 
systems. 

We begin by examining various networking 
technologies suitable for carrying Open 
SoundControl data and discuss shared features of 
these technologies that impact the design of our 
protocol.  Next we discuss the encoding and 
formatting of data.  We describe our novel 
addressing scheme based on a URL-style 

symbolic syntax.  In our last section we specify a 
number of query messages that request 
information from an Open SoundControl system.  

2 Transport Layer Assumptions 

Open SoundControl is a transport-independent 
protocol, meaning that it is a format for data that 
can be carried across a variety of networking 
technologies. Networking technologies currently 
becoming widely available and economical 
include high speed busses such as PCI [8] and 
medium speed serial LANs such as USB [10], 
IEEE-1394 (“Firewire”) [3], Ethernet, and Fast 
Ethernet [4].  Although Open SoundControl was 
not designed with a particular transport layer in 
mind, our design reflects features shared by 
modern networking technologies. 

We assume that Open SoundControl will be 
transmitted on a system with a bandwidth in the 
10+ megabit/sec range.  MIDI’s bandwidth, by 
contrast, is only 31.25 kilobit/sec, roughly 300 
times slower.  Therefore, our design is not 
preoccupied with squeezing musical information 
into the minimum number of bytes.  We encode 
numeric data in 32-bit or 64-bit quantities, 
provide symbolic addressing, time-tag messages, 
and in general are much more liberal about using 
bandwidth for important features. 

We assume that data will be delivered in packets 
(a.k.a. “datagrams”) rather than as a stream of 
data traveling along an established connection.  



(Although many LANs transmit data serially, 
they deliver  the data as a single block.)  This 
leads to a protocol that is as stateless as possible: 
rather than assuming that the receiver holds some 
state from previous communications  (e.g., 
MIDI’s running status), we send information in 
larger, self-contained chunks that include all the 
relevant data in one place.  This packet-based 
delivery model provides a mechanism for 
synchronicity: messages in the same packet (e.g., 
messages to start each of the notes in a chord) 
can be specified to have their effects occur at the 
same time as each other.  We assume that the 
network services will tell us the length of each 
packet that we receive. 

All modern networking technologies have the 
notion of multiple devices connected together in 
a LAN, with each device able to send a packet to 
any other device.  So we assume that any number 
of clients might send Open SoundControl 
messages to a particular device.  We also assume 
that the transport layer provides a return address 
mechanism that allows a device to send a 
response back to the device that sends it a 
message. 

3 Data Representation 

All Open SoundControl data is aligned on 4-byte 
boundaries.  Numeric data are encoded using 
native machine representations of 32-bit or 64-
bit big-endian twos-complement integers and 
IEEE floating point numbers.  Strings are 
represented as a sequence of non-null ASCII 
characters followed by a null, padded with 
enough extra null characters to make the total 
length be a multiple of 4 bytes.  These 
representations facilitate real-time performance 
by eliminating the need to reformat received 
data.  (Except for the unavoidable big-
endian/small-endian conversion.  We note that 
most small-endian machines provide special 
instructions for this conversion.) 

The basic unit of Open SoundControl data is a 
message, which consists of the following: 

• A symbolic address and message name (a string 
whose meaning is described below) 

• Any amount of binary data up to the end of the 
message, which represent the arguments to the 
message. 

An Open SoundControl packet can contain either 
a single message or a bundle.  A bundle consists 
of the following: 

• The special string “#bundle” (which is illegal 
as a message address) 

• A 64 bit fixed point time tag 

• Any number of messages or bundles, each 
preceded by a 4-byte integer byte count 

Note that bundles are recursively defined; 
bundles can contain other bundles. 

Messages in the same bundle are atomic; their 
effects should be implemented concurrently by 
the receiver.  This provides the important service 
in multimedia applications of specifying values 
that have to be set simultaneously. 

Time tags allow receiving synthesizers to 
eliminate jitter introduced during packet 
transport by resynchronizing with bounded 
latency.  They specify the desired time at which 
the messages in the bundle should take effect, a 
powerful mechanism for precise specification of 
rhythm and scheduling of events in the future.  
To implement time tags properly, message 
recipients need a real-time scheduler like those 
described by Dannenberg [1]. 

Time tags are represented by  a 64 bit fixed point 
number.  The first 32 bits specify the number of 
seconds since midnight on January 1, 1900, and 
the last 32 bits specify fractional parts of a 
second to a precision of about 200 picoseconds.  
This is the representation used by Internet NTP 
timestamps [6].  The Open SoundControl 
protocol does not provide a mechanism for clock 
synchronization; we assume either that the 
underlying network will provide a 
synchronization service or that the two systems 
will take advantage of a protocol such as NTP or 
SNTP [7]. 

4 Addressing Scheme 

The model for Open SoundControl message 
addressing is a hierarchical set of dynamic 
objects that include, for example, synthesis 
voices, output channels, filters, and a memory 
manager. Messages are addressed to a feature of 
a particular object or set of objects through a 
hierarchical namespace similar to URL notation, 



e.g., /voices/drone-b/resonators/3/set-Q.  This 
protocol does not proscribe anything about the 
objects that should be in this hierarchy or how 
they should be organized; each system that can 
be controlled by Open SoundControl will define 
its own address hierarchy. This open-ended 
mechanism avoids the addressing limitations 
inherent in protocols such as MIDI and ZIPI [5] 
that rely on short fixed length bit fields. 

To allow efficient addressing of multiple 
destination objects for parameter updates, we 
define a pattern-matching syntax similar to 
regular expressions.  When a message’s address 
is a pattern, the receiving device expands the 
pattern into a list of all the addresses in the 
current hierarchy that match the pattern, similar 
to the way UNIX shell “globbing” interprets 
special characters in filenames.  Each address in 
the list then receives a message with the given 
arguments.   

We reserve the following special characters for 
pattern matching and forbid their use in object 
addresses: ?, *, [, ], {, and }. The # character is 
also forbidden in object address names to allow 
the bundle mechanism.  Here are the rules for 
pattern matching: 

• ? matches any single character except / 

• * matches zero or more characters except / 

• A string of characters in square brackets (e.g., 
[string]) matches any character in the string.  
Inside square brackets, the minus sign (-) and 
exclamation point (!) have special meanings:  
two characters separated by a minus sign indicate 
the range of characters between the given two in 
ASCII collating sequence.  (A minus sign at the 
end of the string has no special meaning.)  An 
exclamation point at the beginning of a bracketed 
string negates the sense of the list, meaning that 
the list matches any character not in the list.  (An 
exclamation point anywhere besides the first 
character after the open bracket has no special 
meaning.) 

• A comma-separated list of strings enclosed in 
curly braces (e.g., {foo,bar}) matches any of the 
strings in the list. 

Our experience is that with modern transport 
technologies and careful programming, this 
addressing scheme incurs no significant 

performance penalty either in network bandwidth 
utilization or in message processing. 

5 Requests for Information 

Some Open SoundControl messages are requests 
for information; the receiving device (which 
we’ll call the Responder in this section) 
constructs a response to the request and sends it 
back to the requesting device (which we’ll call 
the Questioner).  We assume that the underlying 
transport layer will provide a mechanism for 
sending a reply to the sender of a message.   

Return messages are formatted according to this 
same Open SoundControl protocol.  There is 
always enough information in a return message 
to unambiguously identify what question is being 
answered; this allows Questioners to send 
multiple queries without waiting for a response 
to each before sending the next.  The time tag in 
a return message indicates the time that the 
Responder processed the message, i.e., the time 
at which the information in the response was 
true. 

Exploring the Address Space 

Any message address that ends with a trailing 
slash is a query asking for the list of addresses 
underneath the given node.  These messages do 
not take arguments.  This kind of query allows 
the user of an Open SoundControl system to map 
out the entire address space of possible messages 
as the system is running. 

Message Type Signatures 

Because Open SoundControl messages do not 
have any explicit type tags in their arguments, it 
is necessary for the sender of a message to know 
how to lay out the argument values so that they 
will be interpreted correctly. 

An address that ends with the reserved name 
“/type-signature” is a query for the “type 
signature” of a message, i.e., the list of types of 
the arguments it expects.  We have a simple 
syntax for representing type signatures as strings; 
see our WWW site for details. 

Requests For Documentation 

An address that ends with the reserved name 
“/documentation” is a request for human-



readable documentation about the object or 
feature specified by the prefix of the address.  
The return message will have the same address 
as the request, and a single string argument.  The 
argument will either be the URL of a WWW 
page documenting the given object or feature, or 
a human-readable string giving the 
documentation directly.  This allows for "hot-
plugging" extensible synthesis resources and 
internetworked multimedia applications. 

Parameter Value Queries 

An address that ends with the reserved name 
“/current-value” is a query of the current value of 
the parameter specified by the prefix of the 
address.  Presumably this parameter could be set 
to its current value by a message with the 
appropriate arguments; these arguments are 
returned as the arguments to the message from 
the Responder. The address of the return 
message should be the same as the address of the 
request. 

6 Conclusion 

We have had successful early results transmitting 
this protocol over UDP and Ethernet to control 
real-time sound synthesis on SGI workstations 
from MAX [9] programs running on Macintosh 
computers.  Composers appreciate being freed 
from the limited addressing model and limited 
numeric precision of MIDI, and find it much 
easier to work with symbolic names of objects 
than to remember an arbitrary mapping involving 
channel numbers, program change numbers, and 
controller numbers.  This protocol affords 
satisfying reactive real-time performance. 

7 References 

[1] Dannenberg, R, 1989.  “Real-Time 
Scheduling and Computer Accompaniment,” in 
M. Mathews and J. Pierce, Editors, Current 
Directions in Computer Music Research, 
Cambridge, Massachusetts: MIT Press, pp. 225-
261. 

[2] Freed, A.  1996.  “Firewires, LANs and 
Buses,” from SIGGRAPH Course Notes 
Creating and Manipulating Sound to Enhance 
Computer Graphics, New Orleans, Louisiana, 
pp. 84-87. 

[3] IEEE 1995.  “1394-1995: IEEE Standard for 
a High Performance Serial Bus,” New York: The 
Institute of Electronical and Electronic 
Engineers. 

[4] IEEE 1995b.  “802.3u-1995 IEEE Standards 
for Local and Metropolitan Area Networks: 
Supplement to Carrier Sense Multiple Access 
with Collision Detection (CSMA/CD) Access 
Method and Physical Layer Specifications: 
Media Access Control (MAC) Parameters, 
Physical Layer, Medium Attachment Units, and 
Repeater for 100 Mb/s Operation,” New York: 
The Institute of Electronical and Electronic 
Engineers. 

[5] McMillen, K, D. Wessel, and M. Wright, 
1994.  “The ZIPI Music Parameter Description 
Language,” Computer Music Journal, Volume 
18, Number 4, pp. 52-73. 

[6] Mills, D., 1992.  “Network Time Protocol 
(Version 3) Specification, Implementation, and 
Analysis,” Internet RFC 1305.  
(http://sunsite.auc.dk/RFC/rfc1305.html) 

[7] Mills, D., 1996.  “Simple Network Time 
Protocol (SNTP) Version 4 for Ipv4, Ipv6 and 
OSI,” Internet RFC 2030.  
(http://sunsite.auc.dk/RFC/rfc2030.html) 

[8] PCI 1993. PCI Local Bus Specification, 
Revision 2.0, Hillsboro, Oregon: PCI Special 
Interest Group. 

[9] Puckette, M.,  1991. “Combining Event and 
Signal Processing in the MAX Graphical 
Programming Environment,”  Computer Music 
Journal, Volume 15, Number 3, pp. 58-67. 

[10] The USB web site is www.usb.org 

[11] Yamaha 1996.  “Preliminary Proposal for 
Audio and Music Protocol, Draft Version 0.32,” 
Tokyo, Japan: Yamaha Corporation. 


